Multiple Human Pose Estimation with Temporally Consistent 3D Pictorial Structures
نویسندگان
چکیده
Multiple human 3D pose estimation from multiple camera views is a challenging task in unconstrained environments. Each individual has to be matched across each view and then the body pose has to be estimated. Additionally, the body pose of every individual changes in a consistent manner over time. To address these challenges, we propose a temporally consistent 3D Pictorial Structures model (3DPS) for multiple human pose estimation from multiple camera views. Our model builds on the 3D Pictorial Structures to introduce the notion of temporal consistency between the inferred body poses. We derive this property by relying on multi-view human tracking. Identifying each individual before inference significantly reduces the size of the state space and positively influences the performance as well. To evaluate our method, we use two challenging multiple human datasets in unconstrained environments. We compare our method with the state-of-the-art approaches and achieve better results.
منابع مشابه
Multi-view Pictorial Structures for 3D Human Pose Estimation
Pictorial structure models are the de facto standard for 2D human pose estimation. Numerous refinements and improvements have been proposed such as discriminatively trained body part detectors, flexible body models, and local and global mixtures. While these techniques allow to achieve state-of-the-art performance for 2D pose estimation, they have not yet been extended to enable pose estimation...
متن کاملHuman Context: Modeling Human-Human Interactions for Monocular 3D Pose Estimation
Automatic recovery of 3d pose of multiple interacting subjects from unconstrained monocular image sequence is a challenging and largely unaddressed problem. We observe, however, that by tacking the interactions explicitly into account, treating individual subjects as mutual “context” for one another, performance on this challenging problem can be improved. Building on this observation, in this ...
متن کاملHuman Pose Estimation with Fields of Parts
This paper proposes a new formulation of the human pose estimation problem. We present the Fields of Parts model, a binary Conditional Random Field model designed to detect human body parts of articulated people in single images. The Fields of Parts model is inspired by the idea of Pictorial Structures, it models local appearance and joint spatial configuration of the human body. However the un...
متن کاملExploiting temporal information for 3D pose estimation
In this work, we address the problem of 3D human pose estimation from a sequence of 2D human poses. Although the recent success of deep networks has led many state-of-the-art methods for 3D pose estimation to train deep networks end-to-end to predict from images directly, the top-performing approaches have shown the effectiveness of dividing the task of 3D pose estimation into two steps: using ...
متن کاملHuman Motion Tracking and Pose Estimation
Tracking and pose estimation of human figures is a challenging open problem. We focus on model-based approaches to solving this problem, and develop a general framework for describing and comparing the various techniques described in the literature. We briefly describe two existing pose estimation algorithms in terms of this framework: the popular pictorial structures method, and a recent metho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014